Cyclic Polytopes and Oriented Matroids
نویسندگان
چکیده
Consider the moment curve in the real Euclidean space R defined parametrically by the map γ : R → R, t → γ(t) = (t, t, . . . , t). The cyclic d-polytope Cd(t1, . . . , tn) is the convex hull of the n, n > d, different points on this curve. The matroidal analogues are the alternating oriented uniform matroids. A polytope [resp. matroid polytope] is called cyclic if its face lattice is isomorphic to that of Cd(t1, . . . , tn). We give combinatorial and geometrical characterizations of cyclic [matroid] polytopes. A simple evenness criterion determining the facets of Cd(t1, . . . , tn) was given by David Gale. We characterize the admissible orderings of the vertices of the cyclic polytope, i.e., those linear orderings of the vertices for which Gale’s evenness criterion holds. Proofs give a systematic account on an oriented matroid approach to cyclic polytopes. ∗1991 Mathematics Subject Classification: Primary 05B35, 52A25.
منابع مشابه
The Universality Theorems for Oriented Matroids and Polytopes
Universality Theorems are exciting achievements in the theories of polytopes and oriented matroids. This article surveys the main developments in that context. We explain the basic constructions that lead to Universality Theorems. In particular, we show that one can use the Universality Theorem for rank 3 oriented matroids to obtain a Universality Theorem for 6-dimensional polytopes. 1 Universa...
متن کاملConstructing neighborly polytopes and oriented matroids
A d-polytope P is neighborly if every subset of b d 2 c vertices is a face of P . In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals o...
متن کاملBoundary Complexes of Convex Polytopes Cannot Be Characterized Locally
It is well known that there is no local criterion to decide the linear readability of matroids or oriented matroids. We use the set-up of chirotopes or oriented matroids to derive a similar result in the context of convex polytopes. There is no local criterion to decide whether a combinatorial sphere is polytopal. The proof is based on a construction technique for rigid chirotopes. These corres...
متن کاملThe Number of Polytopes, Configurations and Real Matroids
We show that the number of combinatorially distinct labelled d-polytopes on n vertices is at most (n/oo. A similar bound for the number of simplicial polytopes has previously been proved by Goodman and Pollack. This bound improves considerably the previous known bounds. We also obtain sharp upper and lower bounds for the numbers of real oriented and unoriented matroids with n elem...
متن کاملOn the Topology and Geometric Construction of Oriented Matroids and Convex Polytopes
This paper develops new combinatorial and geometric techniques for studying the topology of the real semialgebraic variety 31 (M) of all realizations of an oriented matroid M . We focus our attention on point configurations in general position, and as the main result we prove that the realization space of every uniform rank 3 oriented matroid with up to eight points is contractible. For these s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2000